Lecture 04: Groups and Fields

Group

Definition

A *group*, represented by (G, \circ) , is defined by a set G and a binary operator \circ that satisfy the following properties

- **① Closure.** For all $a, b \in G$, we have $a \circ b \in G$
- **2** Associativity. For all $a, b, c \in G$, we have $(a \circ b) \circ c = a \circ (b \circ c)$
- **3** Identity. There exists an element $e \in G$ such that for all $a \in G$, we have $a \circ e = a$
- **4 Inverse.** For every element $a \in G$, there exists an element $(-a) \in G$ such that $a \circ (-a) = e$

A Quick Check

- Verify that $(\{0,1\}^n,\oplus)$, where \oplus is the bit-wise XOR of bits, is a group
 - Closure and Associativity is trivial to verify
 - Show that $00 \cdot \cdot \cdot 0$ is the identity
 - Show that for $a \in \{0,1\}^n$, the inverse of a is a itself

One-time Pad extended to Arbitrary Groups

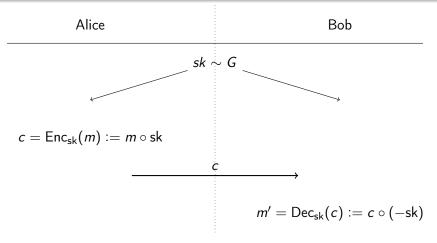


Figure: One-time Pad encryption scheme for the group (G, \circ) .

Verify that the scheme is always correct

Examples I

- Groups can be infinite size. $(\mathbb{Z},+)$, where \mathbb{Z} is the set of all integers and + is integer addition, is a group (Verify that it satisfies all properties of a group)
- Groups can be finite size. $(\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, \dots, n-1\}$ and + is integer addition mod n, is a group (Verify that it satisfies all properties of a group)

Examples II

Following are NOT groups. Find which rule is violated.

- \bullet (\mathbb{Z}, \times), where \times is the integer multiplication
- (\mathbb{Z}^*, \times) , where \mathbb{Z}^* is the set of all non-zero integers and \times is the integer multiplication
- (\mathbb{Q}, \times) , where \mathbb{Q} is the set of all rationals and \times is rational multiplication

But (\mathbb{Q}^*, \times) , where \mathbb{Q}^* is the set of all non-zero rationals and \times is rational multiplication, is a group!

Examples III

- Prove that (\mathbb{Z}_p^*, \times) is a group when p is a prime, \times is integer multiplication $\mod p$, and $\mathbb{Z}_p^* = \{1, \dots, p-1\}$
- Prove that (\mathbb{Z}_n^*, \times) is $\underline{\mathsf{NOT}}$ a group when n is $\underline{\mathsf{NOT}}$ a prime, \times is integer multiplication $\mod n$, and $\mathbb{Z}_n^* = \{1, \dots, n-1\}$

Examples IV

Groups need not be commutative.

- Define a group that is not commutative. Hint: Consider G as the set of $n \times n$ full-rank matrices with elements in \mathbb{Q} . Now, define \circ as matrix multiplication.
 - In the homework we shall define left and right inverses, and left and right identity. We shall prove interesting properties regarding these inverses and identities.

Generator I

- Consider the group $(\mathbb{Z}_5,+)$
- Note that
 - 2 added 0-times is 0
 - 2 added 1-times is 2
 - 2 added 2-times is 4
 - 2 added 3-times is 1
 - 2 added 4-times is 3
 - 2 added 5-times is 0
 - (and so on)
- We say that 2 generates $(\mathbb{Z}_5,+)$ because we can generate the entire set \mathbb{Z}_5 be repeatedly "+"-ing 2 to itself
- Consider the group (\mathbb{Z}_7^*, \times) . Which elements in \mathbb{Z}_7 generate the group? And which elements do not generate the group?

Generator II

- We will introduce a shorthand. By a^k , we represent the number $\overbrace{a \circ a \circ \cdots \circ a}^{k-\text{times}}$
- We define $a^0 = e$, the identity of the group

Repeated Squaring Technique

Let g be a generator of a group (G, \circ) . Consider the following algorithm.

- Let n[0] := g, the identity of (G, \circ)
- For i = 1 to k, do the following:
 - $n[i] := n[i-1] \circ n[i-1]$
- At the termination of the algorithm, we have the following n[0] = g, $n[1] = g^2$, $n[2] = g^4$, ..., $n[k] = g^{2^k}$
- Note that we only used the operation only k times in this algorithm to generate this sequence
- Let i be an integer in the range $\{0, \dots, 2^{k+1} 1\}$
- How to compute g^i using (k+1) additional \circ operations?
- Note: This gives us an algorithm to compute g^i , where $i \in \{0, \dots, 2^{k+1} 1\}$ using at most $(2k + 1) \circ$ operations!

Why Repeated Squaring is Efficient?

- Let (G, \circ) be a group generated by g
- ullet Suppose we are interested in computing g^i
- First Algorithm: Multiply g i-times to get g^i . This method takes O(i) time.
- Second Algorithm: Use repeated squaring to compute g^i . This method takes $O(\log i)$ time.
- Why is the first algorithm an exponential-time algorithm? Why is the second algorithm a polynomial-time algorithm?

Fields

Definition

A field is defined by a set of elements \mathbb{F} , and two operators + and \cdot . The field $(\mathbb{F},+,\cdot)$ satisfies the following properties

- **① Closure.** For all $a, b \in \mathbb{F}$, we have $a + b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$
- **2** Associativity. For all $a, b, c \in \mathbb{F}$, we have (a + b) + c = a + (b + c) and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- **3** Commutativity. For all $a, b \in \mathbb{F}$, we have a + b = b + a and $a \cdot b = b \cdot a$
- **4 Additive and Multiplicative identities.** There exists elements $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that for all $a \in \mathbb{F}$, we have a + 0 = a and $a \cdot 1 = a$
- **3** Additive inverse. Every $a \in \mathbb{F}$ has $(-a) \in \mathbb{F}$ such that a + (-a) = 0
- **1** Multiplicative inverse. Every $0 \neq a \in \mathbb{G}$ has $(a^{-1}) \in \mathbb{F}$ such that $a \cdot (a^{-1}) = 1$
- **O Distributivity.** For all $a, b, c \in \mathbb{F}$, we have $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Examples

- $(\mathbb{Z}_p, +, \times)$ is a field when p is a prime, + is integer addition mod p, and \times is integer multiplication mod p
- $(\mathbb{Q}, +, \times)$ is a field
- The first example mentioned above is a finite field, and the second example mentioned above is an infinite field
- Size of any finite field is p^n , where p is a prime and n is a natural number
- Additional Reading: If interested, read about how the fields of size p^2 , p^3 , ... are defined